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Abstract

Implicit time-integration techniques are envisioned to be the methods of choice for direct numerical simulations (DNS)
for flows at high Reynolds numbers. Therefore, the computational efficiency of implicit flow solvers becomes critically
important. The textbook multigrid efficiency (TME), which is the optimal efficiency of a multigrid method, is achieved
if accurate solutions of the governing equations are obtained with the total computational work that is a small (less than
10) multiple of the operation count in one residual evaluation. In this paper, we present a TME solver for unsteady sub-
sonic compressible Navier–Stokes equations in three dimensions discretized with an implicit, second-order accurate in both
space and time, unconditionally stable, and non-conservative scheme. A semi-Lagrangian approach is used to discretize the
time-dependent convection part of the equations; viscous terms and the pressure gradient are discretized on a staggered
grid. The TME solver for the implicit equations is applied at each time level. The computational efficiency of the solver
is designed to be independent of the Reynolds number. Our tests show that the proposed solver maintains its optimal effi-
ciency at high Reynolds numbers and for large time steps.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the realm of computational fluid dynamics (CFD), the direct numerical simulation (DNS) is one of
the most important methodology to study flow physics numerically, especially for turbulence of compress-
ible [1–8] and incompressible [9–12] flows. The DNS methodology relies on spatial discretizations of the
Navier–Stokes equations with various techniques, such as finite difference, finite volume, finite element,
pseudo-spectral, etc., and various time-integration techniques. With ever increasing computing resources
ubiquitously available, DNS is becoming a more and more powerful means to study turbulence, combus-
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tion, and other flow phenomena. It is well known that the Re9=4 degrees of freedom are required for a
DNS to resolve a flow of Reynolds number Re [13]. Thus, for example, to simulate a turbulent flow at
Re ¼ Oð105Þ, a resolution of N 3 ¼ Oð1011Þ is required. In addition to sufficient spatial resolution deter-
mined by the Reynolds number, appropriate time resolution must also be considered. Kolmogorov’s uni-
versal equilibrium theory postulates that the fundamental spatial and temporal scales of turbulence are the
Kolmogorov length scale l :¼ ðm3=heiÞ1=4 and time scale s :¼ ðm=heiÞ1=2, respectively, where m is the kine-
matic viscosity and hei is the mean dissipation rate [13]. For explicit time-stepping schemes, the Cou-
rant–Freidricks–Levy (CFL) number criterion,
CFL ¼ htcsðMaþ 1Þ
hx

6 1; ð1Þ
limits the time step size ht; here cs is the speed of sound, Ma is the Mach number, and hx is the grid spacing. In
CFD computations, the CFL number computed according to (1) is sometimes referred as acoustic CFL num-
ber to distinguish it from convective CFLc number computed as
CFLc ¼
htcsMa

hx
: ð2Þ
In explicit schemes for turbulent flows, the maximal time step ht is determined by l=U , where U is the
characteristic velocity of energy containing eddies. It can be shown that ht=s ¼ OðRe�1=4Þ [13], implying
that, for high Reynolds number flows, the time step ht allowed by the CFL criterion is far smaller than
the Kolmogorov time scale s. In this scenario, s� ht, explicit time-integration techniques are no longer
efficient computationally. To circumvent the limitation of CFL 6 1, implicit time-integration schemes must
be considered.

Multigrid methods have been generally accepted as the fastest solution techniques for elliptic and other
types of partial differential equations (PDEs) and have been successfully used for many CFD applications;
numerous references can be found in various textbooks (e.g., [14]). To compare efficiency of various solvers,
Brandt introduced the notion of a minimal work unit [15], which is defined as the computational work
involved in one residual evaluation. An optimal multigrid method demonstrating the textbook multigrid effi-
ciency (TME) obtains the solutions of the system of governing equations in a total computational work of less
than 10 minimal work units [15,16]. Several publications review methodologies for achieving TME in CFD
applications [15,17–20]. Brandt [21] compiled a comprehensive list of TME demonstrations, pointed out exist-
ing barriers for extending TME to further CFD applications, and suggested ways to overcome these barriers.

The basic framework for nonlinear TME solvers resides in full multigrid (FMG) algorithms [14,15,22,23].
In FMG algorithms, the solution process starts on a coarse-grid, on which the computational cost to obtain an
accurate solution is insignificant. This coarse-grid solution is then interpolated to the next finer grid as an ini-
tial approximation. A very few multigrid full approximation scheme (FAS) cycles, or just one, are required to
obtain an accurate solution on the finer grid. This process continues until the solution on the targeted finest
grid is achieved.

The objective of FMG algorithms, and TME methods in particular, is to achieve an accurate approxima-
tion to the solution of the differential equations. An approximation is considered accurate if its algebraic error
is smaller than the discretization error. The algebraic error is defined as the difference between the exact and
approximate solutions of the discrete problem, while the discretization error is the difference between the exact
solutions of discrete and differential problems. The latter can be accurately estimated by comparing solutions
at different levels of the FMG algorithm.

In this paper, we overcome one of the most formidable barriers formulated in [21], namely, extending TME
to solutions of three-dimensional (3D) unsteady compressible Navier–Stokes equations at arbitrary Reynolds
numbers. The main contribution of this paper is a novel methodology that combines distributed relaxation
multigrid [20,24,25] with semi-Lagrangian fully implicit discretization of time-dependent convection terms
and leads to TME solvers for turbulent flows at arbitrary Reynolds number. The considered non-conservative
formulation involves staggered-grid spatial discretizations for viscous terms and pressure gradient. The
scheme is second-order accurate in both space and time and unconditionally stable. The multigrid solver is
applied at each time level.
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The proposed methodology takes advantage of a semi-Lagrangian discretization of the time-dependent
convection terms, which dramatically simplifies the interior relaxation scheme. The main benefits of the
semi-Lagrangian discretization include (i) eliminating closed convection characteristics that represent a major
difficulty for steady-state multigrid solutions; (ii) reducing the convection term contributions to the implicit
current-time-level equations to source-like contributions, which improves ellipticity of these equations; (iii)
enabling an efficient distributed relaxation that capitalizes on efficient algorithms previously developed and
validated for elliptic operators; and (iv) ultimately leading to TME for unsteady compressible Navier–Stokes
equations. A distinctive feature of the developed multigrid solver is that its efficiency does not deteriorate at
high Reynolds numbers and at high CFL numbers. The current implementation of the multigrid solver is
serial, but all solver components are completely local, scalable, and suitable for efficient parallel computing;
good practices for efficient parallel implementation of multigrid algorithms are discussed in [19]. Thus, the
proposed methodology is attractive for large-scale turbulent flow computations of practical interest. While
for the reported solver (solving a non-conservative discretization on periodic domains), the applications are
limited to smooth subsonic interior flows with no boundaries, extensions to flows with general boundary con-
ditions and, probably, to conservative formulations suitable for discontinuous flows are possible and currently
researched.

The paper is organized as follows. In Section 2 we describe briefly the compressible Navier–Stokes
equations and related transport coefficients. In Section 3 we discuss the discrete formulation for the com-
pressible Navier–Stoke equations in 3D. Numerical studies of accuracy of this discrete formulation are
reported in Section 4. In Section 5, we introduce the multigrid solver used in this work. In particular,
we discuss components of the outer nonlinear multigrid cycle and, specifically, an efficient distributed
relaxation procedure that involves inner multigrid. In Section 6 we present our numerical results. We first
present a series of tests demonstrating the optimal convergence rates of the residual and the algebraic
errors. We also confirm TME by demonstrating accurate solutions that obtained in less than 10 minimal
work units. The TME solver is also applied for DNS of decaying homogeneous isotropic turbulence in
3D. Finally, in Section 7, we summarize our work and discuss future research directions. We also provide
three appendices. Linear stability of a one-dimensional semi-Lagrangian discretization is shown in Appen-
dix A. Appendix B shows the details of the inter-grid transfers used by the outer multigrid cycle, and
Appendix C provides a local mode Fourier (LMF) analysis explaining the generation of spurious high-fre-
quency errors in red–black relaxation.

2. Fully compressible Navier–Stokes equations in 3D

The system of time-dependent compressible Navier–Stokes equations can be written as
otQþ R ¼ �f; ð3Þ

where Q :¼ ðqu; qv; qw; q; qEÞT is the vector of conserved variables, whose components are the momentum
qu :¼ ðqu; qv; qwÞ, the density q, and the specific total energy qE, �f is the vector of sourcing terms, and R

is the gradient of the fluxes:
R :¼ oxFx þ oyFy þ ozFz; ð4Þ

where Fa :¼ ðPax;Pay ;Paz;qua;KaÞT,
Pab :¼ quaub � rab :¼ quaub þ pdab � sab; ð5aÞ

sab :¼ l oaub þ obua �
2

3
ð$ � uÞdab

� �
þ fð$ � uÞdab; ð5bÞ

K :¼ qEuþ P � uþH ; H :¼ �j$�; ð5cÞ

a; b 2 fx; y; zg :¼ f1; 2; 3g, l and f are the dynamic and bulk viscosities, respectively, j is the heat conductivity,
� is the specific internal energy, and p is the pressure; Pab, rab and sab are the momentum flux tensor, the stress
tensor and the shear stress tensor, respectively, and E and H are the total energy flux and the heat flux, respec-
tively. The fluxes can be written out explicitly as the following:
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Fx ¼

quuþ p � 2loxu� k$ � u
qvu� lðoxvþ oyuÞ
qwu� lðoxwþ ozuÞ

qu

ðqE þ pÞu� uasax � jox�

0BBBBBB@

1CCCCCCA; ð6aÞ

Fy ¼

quv� lðoxvþ oyuÞ
qvvþ p � 2loyv� k$ � u

qwv� lðoywþ ozvÞ
qv

ðqE þ pÞv� uasay � joy�

0BBBBBB@

1CCCCCCA; ð6bÞ

Fz ¼

quw� lðoxwþ ozuÞ
qvw� lðoywþ ozvÞ

qwwþ p � 2lozw� k$ � u
qw

ðqE þ pÞw� uasaz � joz�

0BBBBBB@

1CCCCCCA; ð6cÞ
where k :¼ f� 2
3
l and the Einstein notation of summation over repeated indexes is used, thus,
uasax ¼ l½2uoxuþ vðoxvþ oyuÞ þ wðoxwþ ozuÞ� þ ku$ � u; ð7aÞ
uasay ¼ l½2voyvþ wðoywþ ozvÞ þ uðoxvþ oyuÞ� þ kv$ � u; ð7bÞ
uasaz ¼ l½2wozwþ uðoxwþ ozuÞ þ vðoywþ ozvÞ� þ kw$ � u: ð7cÞ
In general, the simplest form of the Navier–Stokes equations is a non-conservative formulation expressed in
terms of primitive variables, q ¼ ðu; v;w; p; �ÞT, where u :¼ ðu; v;wÞ is the flow velocity vector, p is the pressure,
and � is the internal energy. For a perfect gas, the primitive variables are connected through the following
relations
p ¼ ðc� 1Þq�; ð8aÞ

� ¼ E � 1

2
u2 þ v2 þ w2
� �

; ð8bÞ

c2
s ¼ cp=q; ð8cÞ
where cs is the speed of sound and c is the ratio of specific heats, taken here as c ¼ 1:4.
The time-dependent non-conservative equations are found readily by transforming the time-dependent con-

servative equations
oq

oQ
½otQþ R� ¼ oq

oQ
�f;

otqþ
oq

oQ
R ¼ f̂;

ð9Þ
where oq

oQ
is the Jacobian matrix of the transformation and f̂ ¼ ðf̂ u; f̂ v; f̂ w; f̂ p; f̂ �ÞT. The resulting set of

equations is 1
Dtuþ � l
q

D� k̂
q

oxx

 !
u� k̂

q
ðoxyvþ oxzwÞ þ

1

q
oxp ¼ f̂ u; ð10aÞ
s. (10d) and (10e) correct some typos appeared in the previous papers [17,18]. Specifically, the sign of the terms of U is changed and
m of U=q in (10e) replaces qU.



7164 W. Liao et al. / Journal of Computational Physics 227 (2008) 7160–7177
Dtvþ � l
q

D� k̂
q

oyy

 !
v� k̂

q
ðoxyuþ oyzwÞ þ

1

q
oyp ¼ f̂ v; ð10bÞ

Dtwþ � l
q

D� k̂
q

ozz

 !
w� k̂

q
ðoxzuþ oyzvÞ þ

1

q
ozp ¼ f̂ w; ð10cÞ

Dtp þ qc2
s ð$ � uÞ � ðc� 1ÞðjD�þ UÞ ¼ f̂ p; ð10dÞ

Dt�þ
c2

s

c
ð$ � uÞ � j

q
D�� 1

q
U ¼ f̂ �; ð10eÞ
where the dissipation function U is defined by
U � saboaub

¼ l½2ðoxuÞ2 þ 2ðoyvÞ2 þ 2ðozwÞ2 þ ðoxvþ oyuÞ2 þ ðoxwþ ozuÞ þ ðoywþ ozvÞ2� þ kðoxuþ oyv

þ ozwÞ2; ð11Þ
Dt � ot þ ðu � $Þ is a nonlinear time-dependent convection operator and k̂ ¼ kþ l. According to the Stokes
hypothesis, f ¼ 0 and k ¼ �2=3l, then k̂ ¼ l=3. In what follows, the first three equations are referenced as
momentum equations, the fourth and fifth equations are called the pressure and the energy equations, respec-
tively. Eqs. (10) are defined on a periodic domain and are subject to initial conditions generally considered as a
collection of vortexes. The flows are assumed subsonic implying
0 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
< cs: ð12Þ
There are no restrictions on the flow Reynolds number.

3. Discrete formulation

Eqs. (10) are discretized with a second-order accurate time-implicit discretization on a uniform Cartesian
grid with staggered placement of unknowns ðu; v;w; p; �Þ:
Dh
t uþ 1

�q
½ð�lDh � k̂oh

xxÞu� k̂ðoh
xyvþ oh

xzwÞ þ oh
xp� ¼ f̂ h

u; ð13aÞ

Dh
t vþ 1

�q
½ð�lDh � k̂o

h
yyÞv� k̂ðoh

xyuþ o
h
yzwÞ þ o

h
y p� ¼ f̂ h

v ; ð13bÞ

Dh
t wþ 1

�q
½ð�lDh � k̂oh

zzÞw� k̂ðoh
xzuþ oh

yzvÞ þ oh
z p� ¼ f̂ h

w; ð13cÞ

Dh
t p þ qc2

s ð$h � uÞ � ðc� 1ÞðjDh�þ UhÞ ¼ f̂ h
p; ð13dÞ

Dh
t �þ

c2
s

c
ð$h � uÞ � j

q
Dh�� 1

q
Uh ¼ f̂ h

� ; ð13eÞ
where
Uh � l½2ðoh
xuÞ2 þ 2ðoh

y vÞ2 þ 2ðoh
z wÞ2 þ ðo2h

x vþ o2h
y uÞ2 þ ðo2h

x wþ o2h
z uÞ2 þ ðo2h

y wþ o2h
z vÞ2�

þ kðoh
xuþ oh

y vþ oh
z wÞ2: ð14Þ
The arrangement of discrete variables is illustrated in Fig. 1. On a cubic cell with the edges formed by the spatial
mesh, the velocity components are located on the faces normal to the corresponding directions (e.g., u is placed in
the centers of faces normal to the x-direction); the pressure p and the internal energy � are placed at the cell center.
The discrete momentum equations are centered at the locations of the corresponding velocity components; and
the pressure and energy equations are centered at the locations of the pressure. f̂h ¼ ðf̂ h

u; f̂
h
v ; f̂

h
w; f̂

h
p; f̂

h
� Þ

T are dis-
crete representations of sources. Values of q and c2

s are computed at the cell centers through (8). The values of �q in



Fig. 1. Staggered arrangement of discrete variables.
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the momentum equations are computed from the values of p and � interpolated from the two adjacent cell centers,
where the pressure and the energy are defined. The discrete derivatives oh

x , oh
y , and oh

z are approximated as short
central two-point differences; the derivatives o2h

x , o2h
y , and o2h

z are approximated with four-point stencils that are
derived as averages of two wide central differences; Dh is a standard 3D seven-point approximation to the Lapla-
cian; the second derivatives oh

xx, o
h
yy , and oh

zz are approximated by three-point stencils; the mixed derivatives oh
xy , o

h
xz,

and oh
yz are approximated by short central four-point stencils; Dh

t is the time-dependent convection operator dis-
cretized by a second-order semi-Lagrangian method [26].

The semi-Lagrangian discretization is performed along the convection trajectory arriving to the given grid
point at the current-time-level. For the second-order accuracy, the trajectory is assumed to be a straight line
with the direction defined by the local velocity vector at the arrival point. The trajectory is traced two time
steps backward. A one-dimensional illustration of the semi-Lagrangian discretization is shown in Fig. 2.
The solution values at the previous-time-levels are linearly interpolated (in 3D, from the eight surrounding
nodes) to the departure and transition points and weighted to ensure the second-order accurate stable approx-
imation for the operator Dt
Fig. 2.
the dep
Dh
t pn

ix;iy ;iz
� 1

2ht
3pn

ix;iy ;iz

�
�4

X1

i;j;k¼0

si
x

ð1�sxÞi�1

sj
y

ð1� syÞj�1

sk
z

ð1� szÞk�1
pðn�1Þ

ix�ðkxþiÞ;iy�ðkyþjÞ;iz�ðkzþkÞ

þ
X1

i;j;k¼0

si
x

ð1�sxÞi�1

sj
y

ð1�syÞj�1

sk
z

ð1�szÞk�1
pðn�2Þ

ix�2ðkxþiÞ;iy�2ðkyþjÞ;iz�2ðkzþkÞ

!
; ð15Þ
where, for the given point velocity vector ðu; v;wÞnix ;iy ;iz , un
ix;iy ;iz

ht ¼ ðkx þ sxÞhx, kx is an integer and 0 6 sx < 1;
analogously, vn

ix;iy ;iz
ht ¼ ðky þ syÞhy and wn

ix ;iy ;iz
ht ¼ ðkz þ szÞhz. The first differential approximation (FDA) for

the operator Dh
t computed by the Taylor expansion in four (time and space) dimensions is given by
Second-order accurate semi-Lagrangian discretization of the one-dimensional convection operator ot þ uox. Empty circles denote
arture and transition points; dark circles denote interpolation points.
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FDAðDh
t Þ ¼ ot þ uox þ voy þ woz �

h2
t

3
ðot þ uox þ voy þ wozÞ3 �

1

3ht
ðsxð1� sxÞð1� 2sxÞh3

xðoxÞ3

þ syð1� syÞð1� 2syÞh3
yðoyÞ3 þ szð1� szÞð1� 2szÞh3

z ðozÞ3Þ; ð16Þ
confirming the second-order approximation in space and time. As a result of this discretization, the discrete
convection operator makes a single-point contribution to the stencil of the implicit current-time-level equa-
tions, positively affecting the stability (diagonal dominance) of the system. In the course of this paper, we as-
sume that the spatial grid is isotropic, i.e., has the same mesh size, hx ¼ hy ¼ hz ¼ h, in all directions; the fixed
time step, ht, is allowed to be much larger, ht � h. The specific values of h and ht are governed by the required
resolution accuracy, not by numerical stability considerations.

4. Numerical study of discretization accuracy

The accuracy of the discretization scheme has been studied for a manufactured analytical solution of the
differential equations (10) in a form resembling a traveling cylindrical vortex. For the test problem, the viscos-
ity coefficient and thermal conductivity coefficient are chosen as l ¼ 3� 10�6, j ¼ 5:83� 10�6, respectively. A
sequence of grids is defined on the computational spatial domain chosen as a cube with the edge length L ¼ 1.
The manufactured analytical solution is defined as
u ¼ 1þ 0:1 sin
2p
L
ðx� 0:1tÞ

� 	
cos

2p
L
ðx� 0:1tÞ

� 	
;

v ¼ �0:1 cos
2p
L
ðx� 0:1tÞ

� 	
sin

2p
L
ðx� 0:1tÞ

� 	
;

w ¼ 0;

p ¼ 2� u2 þ v2

2
;

� ¼ 7

ð17Þ
and the corresponding source functions are defined by substituting this solution into (10). The speed of sound
computed for the solution is approximately cs ¼ 2, which corresponds to the Mach number approaching
Ma ¼ 0:5.

The sequence of tested grids includes grids with 17, 33, 65, 129, and 257 points in each spatial dimension,
and the time step ht ¼ 4h for each grid. The acoustic CFL number computed according to (1) is CFL � 12; the
corresponding convective CFL number given by (2) is CFLc � 4. Figs. 3 and 4 demonstrate convergence of the
L1 and L1 norms of the truncation and discretization errors. Truncation errors are computed as residuals
obtained after substituting the exact analytical solution (17) into the discrete equations (13); recall that the
discretization errors are the differences between the exact analytical and discrete solutions. The norms of trun-
cation and discretization errors are computed over the entire time/space domain. The time interval is fixed as
½0; T �, where T ¼ 0:5, so the number of time steps is doubled for each finer grid. For computing the discret-
ization errors, the computations are initialized at the zero time from the analytical solution; at the first (next
after the zeroth) time level, the discretization of the convection term is switched to the first order; at all other
time levels, the second-order accurate discretization (16) is employed. The second-order convergence of the
truncation and discretization errors is observed in all norms confirming the second-order accuracy in space
and time.

5. Multigrid solver

The multigrid solver is applied to solve implicit equations at each time level. The initial approximation is
typically obtained from the solution at the previous-time-level. An informal requirement to the quality of the
initial approximation is that it would represent a good initial solution for Newton iterations. This approxima-
tion is, then, improved by performing one outer nonlinear multigrid cycle. The term ‘‘outer” is used to distin-



Fig. 3. L1 and L1 norms of truncation errors for the discrete equations (13) and solution (17).

Fig. 4. L1 and L1 norms of discretization errors for the solution (17).
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guish the nonlinear multigrid cycle applied to the entire system of flow equations from the ‘‘inner” cycles intro-
duced below that are applied to some linearized scalar operators and used as a part of the relaxation proce-
dure. The implicit equations at the current-time-level are similar to (13) with the operator Dh

t replaced by the
coefficient 3

2ht
and the discrete source function, fh ¼ ðf h

u ; f
h
v ; f

h
w ; f

h
p ; f

h
� Þ

T, accounting for the influence of the pre-
vious-time solutions:
3

2ht
uþ 1

�q
½ð�lDh � k̂o

h
xxÞu� k̂ðoh

xyvþ o
h
xzwÞ þ o

h
xp� ¼ f h

u ; ð18aÞ

3

2ht
vþ 1

�q
½ð�lDh � k̂oh

yyÞv� k̂ðoh
xyuþ oh

yzwÞ þ oh
y p� ¼ f h

v ; ð18bÞ

3

2ht
wþ 1

�q
½ð�lDh � k̂o

h
zzÞw� k̂ðoh

xzuþ o
h
yzvÞ þ o

h
z p� ¼ f h

w ; ð18cÞ
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3

2ht
p þ qc2

s ð$h � uÞ � ðc� 1ÞðjDh�þ UhÞ ¼ f h
p ; ð18dÞ

3

2ht
�þ c2

s

c
ð$h � uÞ � j

q
Dh�� 1

q
Uh ¼ f h

� : ð18eÞ
In the current implementation, the trajectories used in the semi-Lagrangian approximation are computed from
the initial solution approximation obtained from the previous-time-level. This approach is valid for flows with
modest solution variations on the discretization time scale. To account for more volatile flows, several mod-
ifications can be suggested. First, an improved initial approximation can be obtained by shifting the local val-
ues of the previous-time-level solution along the (approximated) trajectories. Second, the trajectory used for
defining the semi-Lagrangian discretization can be found as part of the solution process, not just derived from
the initial guess. This approach leads to somewhat more complicated implicit equations replacing Eqs. (18).
Specifically, the current-level contribution from the semi-Lagrangian operator remains one-point type (a coef-
ficient multiplying solution component), but the coefficient becomes dependent on solutions at the previous-
time-levels. The complication does not adversely affect the efficiency of the multigrid solver described below.
The third possible modification can be used if the initial approximation obtained from the previous-time-level
is not good enough (e.g., the Newton iterations that start from this initial approximation would not converge
fast). In this case, an FMG method with continuation can be developed to improve the initial guess. However,
the excellent convergence demonstrated by the current version of the algorithm for combination of large Rey-
nolds numbers with large time steps indicates that these modifications are probably unnecessary for many
practical applications.

5.1. Multigrid cycle

There are two approaches to solve nonlinear equations with multigrid. First approach employs an FAS
multigrid cycle that provides approximations to the nonlinear solution on each grid involved. Another
approach follows the Newton iteration recipe; it linearizes the original equations to apply linear multigrid
for computing a correction to the initial solution approximation. Some comparative studies of these solution
strategies and their possible combinations have been performed elsewhere [27,28]. In this paper, we chose to
follow the FAS approach.

The FAS ðm1; m2Þ multigrid cycle starts at the target (finest) grid and, at each grid, it performs m1 distributed
relaxation iterations before transferring residuals and solution approximation to the next coarse-grid that has
doubled mesh sizes in each spatial direction. The coarse-grid is constructed in such a way that each coarse cell
agglomerates eight fine-grid cells. All restriction operators, for residuals and for solutions, are linear operators
with minimal symmetric stencils. Details of the inter-grid transfers used by the outer multigrid cycle are shown
in the Appendix B. The formulation on the current grid is formed according to the standard FAS procedure
[14–16]. The coarsening is continued recursively until the coarsest (usually 93) grid is reached and the coarsest-
grid formulation is solved to (almost) zero residuals. The correction, defined as the difference between the final
and the initial solution on the current grid, is then tri-linearly interpolated to the finer grid. On each grid, the
obtained coarse-grid correction is added to improve the current solution approximation and followed by m2

relaxation iterations. Prolongation of the coarse-grid correction is continued to finer grids until the target grid
approximation is corrected and relaxed. In the current version of the algorithm m1 ¼ m2 ¼ 1.

5.2. Distributed relaxation

5.2.1. Principal linearization

A basic step in developing an efficient multigrid algorithm is design of an efficient relaxation procedure. For
nonlinear problems, the relaxation procedures are derived through Newton iterations recipe. The full Newton
linearization of the Navier–Stokes equations (3) is a complicated operator, and its solution (inversion)
involves a significant cost. To reduce the computational cost without compromising efficiency, one can opt
to relaxation of a principal linearization. The principal linearization of a scalar equation contains the linear-
ization terms that make major contributions to the residual per unit change in an unknown variable. The prin-
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cipal terms thus generally depend on parameters of the problem, in particular, on the scale, or mesh size, of
interest. For example, the discretized highest derivative terms are principal on grids with small enough mesh
size. For a discretized system of differential equations, the principal terms are those contributing to the prin-
cipal terms of the system determinant. Examples of principal linearization matrices for various flow equations
are discussed elsewhere [17,18].

The relaxation scheme is defined for the equation
Ldq ¼ RðqnÞ; ð19Þ

where L is a principal linearization matrix, RðqnÞ is the residual of the nonlinear equations computed for the
current approximate solution qn, and dq � qnþ1 � qn is the correction computed in the relaxation.

Although significantly simplified by retaining only principal terms, the system (19) is still a set of compli-
cated coupled equations. Therefore, a straightforward (e.g., collective Gauss–Seidel) relaxation of L is not
often effective. The distributed relaxation method replaces dq in (19) by Mdw.
LMdw ¼ RðqnÞ: ð20Þ

With an appropriate choice of the distribution matrix M, the resulting matrix LM becomes lower triangular.
The diagonal elements of LM are composed ideally of the separable factors of the matrix L determinant.
These factors are discretization of scalar differential operators, so their efficient relaxation is a much simpler
task than relaxing the entire system associated with L. In relaxing scalar factors, any change introduced in the
variables dw during relaxation is distributed, with the pattern defined by the matrix M, to the primitive vari-
ables, dq ¼Mdw. Often, the variables dw need not to be stored (thereby, they termed sometimes as ‘‘ghost”
variables); the changes introduced to dw are immediately distributed to the ‘‘true” correction variables dq. In
the solver reported in this paper, we do not take advantage of this option and solve for dw before distributing
correction to dq.

For nonlinear equations (18), the principal linearization matrix derived from the linearization around the
current solution approximation is obtained as
L ¼

Qh
�m � k̂

�q oh
xx � k̂

�q oh
xy � k̂

�q oh
xz

1
q oh

x 0

� k̂
�q o

h
xy Qh

�m � k̂
�q o

h
yy � k̂

�q o
h
yz

1
q o

h
y 0

� k̂
�q o

h
xz � k̂

�q o
h
yz Qh

�m � k̂
�q o

h
zz

1
q o

h
z 0

cpoh
x cpoh

y cpoh
z Qh ð1� cÞjDh

ðc� 1Þ�oh
x ðc� 1Þ�oh

y ðc� 1Þ�oh
z 0 Qh

v

2666666664

3777777775
; ð21Þ
where the discrete operator Qh
�m ¼ 3

2ht
� �mDh, �m :¼ l=�q, and Qh

v is similarly defined with v :¼ j=q. All the coeffi-
cients are computed from the current solution approximation and frozen during the course of relaxation. Thus
det L ¼ ðQh
�mÞ

2½A2ðDhÞ2 þ A1D
h þ A0�; ð22Þ
where coefficients Ai are defined as
A0 ¼ ðQhÞ3;

A1 ¼ �
Qh

q
ðQhðjþ k̂þ lÞ þ qc2

s Þ;

A2 ¼
j
q2

Qhðk̂þ lÞ þ qc2
s

c

� � ð23Þ
and Qh ¼ Qh
0 ¼ 3

2ht
is a scalar factor, not a difference operator.

The determinant (22) can be further factorized
det L ¼ ðQh
�mÞ

2A2ðDh � X 1ÞðDh � X 2Þ; ð24Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

where X 1;2 ¼

�A1	 A2
1
�4A0A2

2A2
are non-negative scalar factors within the physical range of parameters and solu-

tions. The validity of the principal linearization (21) for the pressure and energy equations, Eqs. (10d) and
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(10e), relies on the assumption that the dissipation function U (11) is negligible relative to other terms involv-
ing velocity gradient in these equations. Because U 
 lk$uk2, the condition U� qc2

sk$ukmeans lk$uk � cp,
or equivalently
k$0u0kMa2 � Re; ð25Þ

where Re :¼ qUL=l, Ma :¼ U=cs, k$0u0k :¼ Lk$uk=U , and L and U are characteristic length and velocity,
respectively. Therefore, so long as the condition (25) is satisfied, regardless the actual value of the Reynolds
number Re, the principal linearization (21) is valid. Obviously, this condition is satisfied for smooth Newto-
nian flows. However, it can be violated for non-smooth flows, which have discontinuities and
lk$uk max ¼ Oð1Þ, hence U is no longer negligible. Consequently the principal linearization of the pressure
and energy equations must include contributions from U for non-smooth flows.

5.2.2. Distribution matrix

The distribution matrix M is given by
M ¼

1 0 0 � 1
q oh

xQh
v � ðc�1Þj

q oh
xD

h

0 1 0 � 1
q oh

y Qh
v � ðc�1Þj

q oh
yD

h

0 0 1 � 1
q oh

z Qh
v � ðc�1Þj

q oh
z D

h

k̂o
h
x k̂o

h
y k̂o

h
z Qh

nQh
v Qh

nðc� 1ÞjDh

0 0 0 c2
s

cq Dh QhQh
n � c2

s D
h

26666666664

37777777775
ð26Þ
where n :¼ ðk̂þ lÞ=q, consequently,
LM ¼

Qh
�m 0 0 0 0

0 Qh
�m 0 0 0

0 0 Qh
�m 0 0

Poh
x Poh

y Poh
z A2 Dh � X 1

� �
Dh � X 2

� �
0

c2
s
c o

h
x

c2
s
c o

h
y

c2
s
c o

h
z 0 A2ðDh � X 1ÞðDh � X 2Þ

266666664

377777775
; ð27Þ
where P � qc2
s þ k̂Qh. Thus, relaxation of the system (19) is reduced to relaxation of scalar factors located on

the main diagonal of (27).

5.2.3. Inner multigrid cycle for scalar factors

The last two scalar factors appearing on the main diagonal of (27) approximate a fourth-order differential
operator that is a composition of two second-order differential operators. Developing a suitable relaxation for
such a composition is not straightforward; efficient relaxation schemes for the second-order operators are
much easier to derive. Thus, an efficient procedure for relaxing the fourth-order operator
A2ðDh � X 1ÞðDh � X 2Þdw ¼ f ð28Þ

consists of two steps: first, one ‘‘inner” multigrid cycle is applied to the equation
ðDh � X 1Þ/ ¼ f =A2 ð29Þ

with initial approximation / ¼ ðDh � X 2Þdw, which is typically zero because dw is a distributed correction.
Then, one ‘‘inner” multigrid cycle is applied to the equation
ðDh � X 2Þdw ¼ /: ð30Þ

To unify the treatment of all scalar factors, one inner multigrid cycle is applied to all factors on the main diag-
onal of (27), not only to the last two operators. The additional complexity related to employing a multigrid
cycle instead of a single-grid relaxation is very small: complexity of the scalar operators is almost negligible
comparing to complexity of the target nonlinear system; also, the 3D multigrid adds only a small fraction



Fig. 5. Schematic of the FV-cycle for 4-level multigrid where m0 denotes the number of relaxations on the coarsest mesh ðX8hÞ.
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to the work performed in relaxation on the finest grid because the complexity of each next coarse-grid is eight
times smaller than the complexity of the previous fine-grid.

The relaxation scheme used for the inner cycle is the red–black relaxation. In the limiting case of ht � h
when Qh approaches zero together with X 1 and X 2, this relaxation provides smoothing factor of 0.445 [14],
which becomes even better for larger values of X 1 and X 2 because of increased diagonal dominance of the dis-
crete equations.

Some terms of the distribution matrix (26) are approximations to fourth-order differential operators. The
high-order derivatives in the distribution matrix increase sensitivity of the correction dq to high-frequency
error that can be introduced to dw. In particular, if the initial error is very smooth (no high-frequency error
components), red–black relaxation is known to generate some spurious high-frequency errors of a small
amplitude depending on the amplitude and the frequency of the initial error. Appendix C contains the Fourier
mode analysis explaining the generation of spurious high-frequency errors in red–black relaxation.

Even a small spurious high-frequency error can lead to significant initial increase in algebraic errors that
can destroy TME or even provoke divergence of outer nonlinear iterations. To minimize spurious high-fre-
quency errors, we employ the FVðm1; m2Þ multigrid cycle (a version of the F-cycle, sketched in Fig. 5), which
dramatically reduces the amplitude of the smooth initial error. Note that a similar algorithm was used in [29].

The FV(2, 2) cycle is designed to implement preliminary reduction of smooth-error components and is used
in our algorithm for inner multigrid. Convergence rates of inner multigrid cycles are always better than one
order of magnitude per cycle.

6. Numerical results

The first series of tests illustrates the residual and the algebraic error convergence rates demonstrated by the
outer multigrid cycle. Recall that the algebraic errors are measured as the difference between the solutions
obtained after each cycle and the exact discrete solution corresponding to the zero residuals. The tests are per-
formed for the initial approximation and the forcing terms defined by the exact analytical solution (17). The
target spatial resolution of 1293 is defined on the cube with the characteristic length of L ¼ 1, i.e., the spatial
mesh size h ¼ 1=128 and the time step ht ¼ 20 h. The acoustic CFL number is CFL � 60; the corresponding
convective CFL number is CFLc � 20. The convergence of the outer FAS(1, 1) cycle is observed at the time
level T ¼ 1:5625. The initial approximation is obtained from the previous-time-level. The departure and tran-
sition points of the semi-Lagrangian discretization are updated after each cycle. Convergence of the L1 norm
of the algebraic errors and the residuals of the implicit equations is shown in Fig. 6. The convergence is very
fast exhibiting rates that are uniformly better than an order of magnitude per cycle and do not deteriorate for
multiple iterations. The convergence rates remain the same for refined grids and larger CFL numbers.

The TME version of this algorithm applies only one outer multigrid cycle at each time level, before pro-
ceeding to the next time level. The solutions computed on grids with h ¼ 1=64; ht ¼ 10 h and on grids with
h ¼ 1=128; ht ¼ 20 h. Fig. 7 shows the time evolution of the ratio of the L1 norms of algebraic and discreti-
zation errors for the u-velocity component and for the pressure. The ratios computed on the tested grids are
almost identical, which indicates that the main error contribution is caused by time integration. On both grids
at any time level, the ratios are well smaller than 1, which confirms the desired accuracy of the solution and
shows that the efficiency of the algorithm is not degraded on finer grids and for larger CFL numbers. The esti-
mated complexity of this solver is about seven minimal work units.



Fig. 6. Multigrid convergence of L1 norms of algebraic errors and residuals.

Fig. 7. The ratio of algebraic errors and discretization errors with only one cycle at each time step in the unsteady case.
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In the current study, we directly measured the total complexity of the algorithm using the minimal work
units, where one minimal work unit is the operation count in one residual evaluation performed in the
time/space domain. A numerical test based on a 653 grid has been done on a 2.2 GHz AMD Opteron proces-
sor. Evaluation of spatial residuals at a hundred time levels took 150 s, while the total time for one hundred
time level evolutions with one outer multigrid cycle at each level was 1352 s. Thus, the wall-clock time to
obtain solution with discretization accuracy was approximately the same as for nine residual evaluations in
the time–space domain. The numerically verified complexity of the solver is just a little larger than the pre-
dicted complexity of seven minimal work units. Note that the time test was performed with a research version
of the code (performing some unnecessary computations) and with no optimization whatsoever. With minimal
optimization efforts, the theoretical and numerically verified complexity estimates are expected to match.

Finally, we conduct a DNS of decaying homogeneous isotropic turbulence (DHIT) with the current TME
method. DHIT is a classic problem for turbulence research. In this case, the simulation is conducted in a three-
dimensional cube with periodic boundary conditions. One only needs to specify a random isotropic initial
velocity field. In the current study, we consider a weak compressible flow with a low Mach number
Ma ¼ 0:2. The initial velocity field is generated in the spectral space k specified by the initial energy spectrum
with random phase as the following [30,13]:
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eEðk; 0Þ ¼ 0:038kme�0:14k2
; k 2 ½kmin; kmax�;

0; k 62 ½kmin; kmax�;

(
ð31Þ
where eEðk; 0Þ is the initial energy spectrum and k ¼ kkk is the wave-number. Then the initial velocity field is
transferred to physical space. The initial density qðx; t ¼ 0Þ consistent with the initial velocity field uðx; t ¼ 0Þ
is obtained by an iteration procedure [31].

The energy spectrum is governed by the following equation [13]:
ot
eEðk; tÞ ¼ �eT ðk; tÞ � 2mk2eEðk; tÞ; ð32Þ
where eT ðk; tÞ represents the nonlinear energy transfer between modes [13]. The kinetic energy KðtÞ and dissi-
pation eðtÞ are given by
KðtÞ ¼
Z eEðk; tÞdk; eðtÞ ¼ 2m

Z
k2eEðk; tÞdk: ð33Þ
The isotropic turbulence can be characterized by the transverse Taylor-microscopic Reynolds number
Rek ¼
urmsk

m
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15mu2

rms

e

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
10mK

e

r
; ð34Þ
where urms ¼
ffiffiffiffiffiffiffiffiffiffiffi
2K=3

p
is the root mean square (rms) of the velocity field and k is the transverse Taylor-micro-

scale length. It has been observed that the decay of kinetic energy K and dissipation rate e follows the power
law after the initial transient period time [13],
KðtÞ
K0


 t
t0

� ��n

;
eðtÞ
e0


 t
t0

� ��ðnþ1Þ

; ð35Þ
where K0 and e0 are the values of kinetic energy and dissipation rate at the reference time t0 ¼ nK0=e0.
In the present study, we choose m ¼ 4 in (31) for the initial field. Other parameters in the simulation are:

½kmin; kmax� ¼ ½5; 15�, urms ¼ 0:0577 and m ¼ 6:9� 10�4, which results in the Rek � 31. Our computation is per-
formed in a cube with the characteristic length of L ¼ 2p based on the grid size of 1293. The evolutions of the
normalized kinetic energy K=K0 and dissipation rate e=e0 with time are presented in Fig. 8(a). In the absence of
the production, the kinetic energy K decays monotonically in time while the dissipation rate e goes up at the
early stage. This increase in dissipation rate is consistent with the known turbulence physics. Beyond this per-
iod, the dissipation rate also decays monotonically as well as the kinetic energy. Our results are in agreement
with the existing ones [32–35].
DNS of decaying homogeneous isotropic turbulence in 3D by using the TME multigrid method: (a) the evolutions of the total
energy KðtÞ=K0 and the dissipation rate eðtÞ=e0, and (b) the dynamics of the transverse Taylor-microscale Reynolds number RekðtÞ,
cay exponents nKðtÞ and n�ðtÞ computed from the energy KðtÞ=K0 and the dissipation rate eðtÞ=e0, respectively.
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Fig. 8(b) shows the evolution of the decay exponent n in time computed from both the kinetic energy KðtÞ
and the dissipation rate e. We can see that nKðtÞ and n�ðtÞ converge to each other after a initial period of time
about t=t0 � 2. The decay of the kinetic energy K and the dissipation rate e follows the power law with the
decay exponent n � 1:73 after the initial transient period time. This value agrees well with previous results
[32–35]. The evolution of Rek in time is also illustrated in Fig. 8(b), which shows that Rek is decreasing as
the turbulence decays. Fig. 8(b) shows that the grid Reynolds number Re�k :¼ Rek=N < 1:0 for N ¼ 129, indi-
cating that the flow is well resolved.

7. Conclusions and future work

Textbook multigrid efficiency (TME) solver has been developed for three-dimensional compressible time-
dependent Navier–Stokes equations discretized with an implicit, second-order accurate, unconditionally sta-
ble, and non-conservative scheme. A semi-Lagrangian approach has been used to discretize the time-depen-
dent convection part of the equations. The viscous terms and the pressure gradient are discretized on a
staggered-grid. Efficient distributed relaxation scheme with inner multigrid cycles has been developed. Accu-
racy, optimal convergence rates, and fast reduction of algebraic errors below the level of discretization accu-
racy have been demonstrated. The efficiency of the solver does not deteriorate for high Reynolds numbers and
for large time steps. The TME solver has been applied to direct numerical simulations of decaying turbulence
and the results agree with previous ones obtained by explicit solvers.

For the applications reported in this paper, the solver has been applied to a non-conservative formulation
on a domain with periodic boundary conditions. Currently we are testing a version of the multigrid solver with
general (inflow, outflow, and no-slip) boundary conditions. Semi-Lagrangian method is slightly modified near
the boundaries, but retains its favorable properties, such as second-order accuracy and stability. The distrib-
uted relaxation applied in the interior is complimented with a block-relaxation near boundaries. We are also
planing to test conservative formulations corresponding to the semi-Lagrangian methodology. Several such
schemes have been developed and applied within environmental science community [36,37].
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Appendix A. Unconditional linear stability of semi-Lagrangian discretization

In this section, we present a von-Neumann stability analysis of a 1D constant-coefficient convection–diffu-
sion equation
otuþ aoxu� loxxu ¼ f ; ðA:1Þ

in which the time-dependent convection term discretized on a uniform grid with a semi-Lagrangian method.
Assuming a > 0, the discretization is given by
1

ht

3

2
un

i �2 ð1�sÞun�1
i�k þsun�1

i�ðkþ1Þ

h i
þ1

2
ð1�sÞun�2

i�2kþ sun�2
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h i
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h2
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¼ f n

i ; ðA:2Þ
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where ht and h are the time step and the spatial mesh size, respectively, n and i are time and spatial indexes,
respectively, and
CFLc �
aht

h
¼ k þ s; ðA:3Þ
where CFLc is the convective CFL number (2) and k ¼ ½CFLc� is the integer part of CFLc and 0 6 s < 1.
For a solution in the form
un
i ¼ kneıx; ðA:4Þ
where ı :¼
ffiffiffiffiffiffiffi
�1
p

, the characteristic polynomial corresponding to the discretization (A.2) is
3

2
� 2

ReL
cos x� 1ð Þ

� �
k2 � 2e�ıkx ð1� sÞ þ se�ıxð Þkþ 1

2
e�ı2kx ð1� sÞ þ se�ı2x

� �
¼ 0; ðA:5Þ
the coefficients of the polynomial depend on three parameters: the spatial frequency, x, the local Reynolds
number, ReL ¼ h2

lht
, and the convective CFL number, CFLc. A simple check shows that for any x and any po-

sitive ReL and CFLc, the amplitudes of the roots of the characteristic polynomial (A.5) are bounded by one,
which implies unconditional stability of the scheme (A.2).

Appendix B. Outer multigrid: inter-grid transfers

The version of the outer FAS multigrid cycle used in this solver constructs the coarse-grid cells by merging
eight fine-grid cells. The obtained grids are not nested. Other coarse-grid constructions are also possible and
are not expected to affect adversely the algorithm efficiency. All prolongation operators used in the multigrid
cycle are tri-linear interpolation operators. In this appendix, we present explicit formulas for some of the
restriction operators in use.

For definiteness, we assume a three-index integer numeration of cell centers on each grid and half-index
shifts to indicate cell-faces centers. The numeration starts as ðix; iy ; izÞ ¼ ð1; 1; 1Þ at the left-back-bottom corner
and increases dimension-by-dimension.

The restriction operator describing coarsening of the pressure and energy related quantities is an averaging
over eight corresponding fine-grid quantities:
P c
ix;iy ;iz

¼ 1

8

X1

l;m;n¼0

pf
2ix�l;2iy�m;2iz�n; ðB:1Þ
where P c
ix;iy ;iz

and pf
ix;iy ;iz

are the coarse and fine-grid values, respectively.
The restriction operator describing coarsening of the u-velocity related quantities is defined as
U c
ixþ1

2;iy ;iz
¼ 1

16

X1

m;n¼0

uf
2ix�1

2;2iy�m;2iz�n þ 2uf
2ixþ1

2;2iy�m;2iz�n þ uf
2ixþ3

2;2iy�m;2iz�n

� �
: ðB:2Þ
Other velocity related restriction operators are analogously defined.

Appendix C. Fourier mode analysis of three-dimensional red–black relaxation

In this appendix, we apply the local mode Fourier (LMF) analysis for analyzing three-dimensional red–
black relaxation of the standard seven-point discrete Laplacian. Foundations and applications of the LMF
analysis can be found in the pioneering paper [22] and in textbooks, e.g., [14,38]. The Fourier symbol of
the relaxation is an 8� 8 block-diagonal matrix acting in the linear vector space corresponding to the ampli-
tudes of the octet of the Fourier components, fej½ðhxþlpÞixþðhyþmpÞiyþðhzþnpÞiz�g; l;m; n ¼ 0; 1, with normalized Fou-
rier frequencies �h ¼ ðhx; hy ; hzÞ satisfying maxðj �h jÞ :¼ maxðj hx j; j hy j; j hz jÞ 6 p. Explicitly, for a pair of
Fourier components
�eð�hÞ ¼ ðejðhxixþhy iyþhzizÞ; ej½ðhxþpÞixþðhyþpÞiyþðhzþpÞiz�Þ; ðC:1Þ
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the symbol, Rð�hÞ, of the red–black relaxation is defined as a parameterized matrix
Rð�hÞ ¼
Cð�hÞ½1þCð�hÞ�

2
Cð�hÞ½1þCð�hÞ�

2

Cð�hÞ½1�Cð�hÞ�
2

Cð�hÞ½1�Cð�hÞ�
2

" #
; ðC:2Þ
where Cð�hÞ ¼ ðcos hx þ cos hy þ cos hzÞ=2. In particular, if the initial error is given as �eð�hÞ � �a0, where
�a0 ¼ ða0

1; a
0
2Þ

T is the vector of amplitudes, then after the relaxation the new amplitudes, �a1, satisfy
�a1 ¼ Rð�hÞ � �a0: ðC:3Þ

Assuming that the initial error has no high-frequency content, and a0

1 ¼ 1, a0
2 ¼ 0, and maxðj �h jÞ < p

2
, then the

red–black relaxation yields a high-frequency error with the amplitude a1
2 ¼ a0

1Cð�hÞ½1� Cð�hÞ�=2 corresponding
to the Fourier mode ðhx þ p; hy þ p; hz þ pÞ. Even though the amplitude of a1

2 
 a0
1Oððmaxðj �h jÞÞ2Þ 
 Oðh2Þ is

second-order small compared to a0
1, the high-frequency error a1

2 is still amplified considerably by the distribu-
tion matrix by a factor of Oðh�4Þ. Therefore, an inner FV multigrid cycle must be used to guarantee a suffi-
ciently small initial smooth-error amplitude.
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